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The effect of a uniform magnetic field on the capillary break-up of a thin cylinder of magnetic liquid at rest, surrounded by an 
unbounded liquid with other coefficients of viscosity and magnetic permeability, is investigated in the linear formulation. An 
approximate expression is obtained for the root of the dispersion relation, describing the development of the instability when 
the viscosity force plays a predominant role compared with the inertia forces. Well-known forms of the roots, corresponding 
both to the interfaces of the immiscible liquids with different coefficients of viscosity and the interfaces of the viscous and non- 
viscous liquids, follow from the expression obtained as special cases. Compared with existing publications, in the latter case the 
next terms of the expansion in powers of the small parameter, representing the ratio of the characteristic diffusion time of the 
vorticity to the characteristic capillary-viscous time, are obtained. © 2001 Elsevier Science Ltd. All rights reserved. 

A considerable number of publications (see, for example, the bibliography in [1, 2]) have been devoted 
to the investigating the effect of external magnetic fields on the stability of free surfaces, and also 
the interfaces between magnetic liquids. It is well known that the plane free surface of a magnetic 
liquid at rest loses stability when acted upon by a magnetic field I-In, orthogonal to it, which exceeds a 
critical value H.. In the case of instability, caused by the normal component of the inclined field 
H = I-In + H~, Hn > H., the tangential component ~ inhibits an increase in the harmonics corresponding 
to a certain range of variation of the wave vectors, which depends on Hr. The effect of the stabilizing 
action of the tangential magnetic field manifests itself clearly when the field inhibits the capillary 
instability of a cylindrical layer of magnetic liquid [1-3] and a thin cylindrical jet [4], and also in 
experiments with magnetic liquids when investigating the formation of viscous fingers in porous media 
[1] and the decay of a thin layer of magnetic liquid due to Rayleigh-Taylor instability [5]. 

In this paper we investigate the effect of a uniform longitudinal field on the capillary instability of a 
thin cylinder of a liquid with viscosity ~1 and magnetic permeability ~q at rest, surrounded by an 
unbounded liquid with viscosity r12 and permeability ~t2 ~ kq; the densities of the liquids are the same. 
This problem was considered for the first time by Rayleigh [6] for a cylinder of viscous non-magnetic 
liquid having a free surface. As it applies to the case when viscous forces play a predominant role 
compared with inertia forces, a dispersion relation was obtained and the development of axisymmetrical 
perturbations of a cylindrical free surface was investigated in [6]. 

The first experimental investigation of th e capillary break-up of an extremely prolate axisymmetrical 
drop of a viscous liquid of density Pl, suspended in an immiscible viscous liquid of density P2 = Pl, was 
carried out by Taylor [7]. Considerable attention has been devoted to analysing this phenomenon at 
the present time (see, for example, the experimental papers [8-10] and the theoretical papers [11-18]; 
in [15-18] the capillary break-up of an extremely prolate axisymmetrical drop was investigated in the 
nonlinear formulation). 

The content of the linear theory of the stability of uniform steady states of continuous media is finding 
the dispersion relation and investigating the behaviour of its roots for real values of the wave number 
as a function of dimensionless parameters characterizing the phenomenon being investigated. As it 
applies to the problem considered here, a root was obtained analytically earlier in the case when there 
is no magnetic field with the following simplifying assumptions: (a) 111 ~ 0, 112 = 0 [6, 11-13], 
(b) lql = 0, I]2 ~ 0 [11, 13] and (c) lql = 112 [14]. Unlike existing publications, the general expression 
obtained below covers all these special cases. 
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1. F O R M U L A T I O N  OF THE P R O B L E M  

Suppose a horizontal cylinder of radius a is at rest in an unbounded volume of magnetic liquid. The 
cylinder consists of an immiscible liquid having a different magnetic permeability. Both liquids are placed 
in a uniform magneti6,field H0, parallel to the axis of the liquid cylinder, and have the same densities. 
We will introduce a cylindrical system of coordinates r, O, z, so that  the interface between the liquids 
is described by the equation r = a. We will assume that the magnetic permeabilities of the liquids 
~l (in the region r < a) and kt2 (in the region r > a )depend only on the modulus of the magnetic field 
strength. In the case considered, in each of the media the induction Bj0 = ~tjH0 and the magnetization 
Mj0=  7~-H0 are uniform; here Zj = ~tj(Ho)l~to - 1 is the magnetic susceptibility while ~t0 = 4re x 10 -7 
H.m -1 is the permeabili~ of free space. Here and everywhere henceforthj  = 1, 2. 

Since VH0 = 0 and the magnetic lines of force do not intersect the interface, the field exerts no force 
on the liquids. In view of this the pressure is distributed in accordance with the hydrostatic law: when 
r < a we have P]0 = pgr cos O + t~/a and when r > a correspondingly P20 = pgr cos O, where g is the 
acceleration due to gravity, t~ is the surface tension coefficient, and the azimuthal angle O is measured 
from the direction ofg. 

We will formulate, in its linear form, the problem of the stability of the hydrostatic state Pol, Mm, 
POE, M02 with respect to axisymmetrical perturbations of the cylindrical interface of the liquids. When 
~ti(Ho) ~ ~tE(Ho) the deformation of the initial form of the interface gives rise to perturbations of the 
magnetic field Hy - Ho = Vf s (r, z, t), and also of the induction By - By 0 = by (r, z, t) and the magnetization 
My - Mjo = mj(r, z, t) and generates volume magnetic forces which affect the further dynamics of the 
liquids. Apart from small first-order terms, we have 

~fJ 
H j - H o = -~Z 

mj = I---b. -Vf j  
[ . to 1 

afj +B,j(Ho)~z ez bj = ~j(Ho)--~r e r 

(1.1) 

where er and ez are~the basis vectors corresponding to the coordinate lines r and z, while kttj = dBsldH s 
is the differential magnetic permeability. 

Taking (1.1) into account we can write the linearized equations of ferrohydrodynamics [2] in the form 

auj uj awj 
ar + -Z + -~'-r =0 (1.2) 

OUj Opj (O2Uj I OUj O2uj Uj ~ O2fj 
= i ) at Or az 2 r 2 arOz p + r lA  ~..~_2 + 7-~-y + +l.toMjo (1.3) 

t o t  or 

Owj Opj (a2wj l o,,, s a2wj  O2D 
ae (1.4) 

I " ' t '°) 
0r 2 r Or OZ -- ~].ts(Ho) 

where (us, 0, wj) are the components of the velocity vector and pj is the pressure perturbation in the 
corresponding region. 

Suppose the equation r = a + ~(z, t) represents the shape of the perturbed interface of the liquids. 
The linearized kinematic and dynamic conditions at the interface (where r = a), and also the conditions 
of continuity of the tangential component of the magnetic field and of the normal component of the 
induction can be written as follows 

- - = U  I ,  U I = U  2 ,  W I = W  2 
0t 

(aul awl~ (Ou2 aw2 
(1.6) 
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Pi - p2 : 2111"~r - 2"qi -~'r - a[ 7 + ~z2 j 

. .  

~s(Ho) li,j = (1.7) 

Only the functions us, w/,py a n d f  s, which are bounded when r = 0 and vanish as r --~ *% naturally have 
a physical meaning. 

In order to simplify the calculations we will introduce the velocity potentials %(r, z, t) and the stream 
functions 

~ r  s i {IV/ {t l  t I DI s 
us=  , , ws=  (1.8) 

r Dz Dz r Dr 

(1.9) 

rlj 
vj = - -  (1.9) 

P 

and we will change [19] from system (1.2) - (1.4) to the equations 

D2~,0s 
~s +LD%+ =o 
Dr 2 r Dr 

Dig s Vjf,D2¥j I DYs+D2¥jI~'~i 
Dt t ~r z r Dr dZ- J =0' 

and the representations for the pressure perturbations 

(1.10) 
D~Oj . D D 

Ps = -P'~-- + ~oMso 

Taking relations (1.8) and (1.10) into account, we can write boundary conditions (1.6) in the form 

~ _- De, +/by._.,., 
& Dr a Dz 
a@, D~2 =_i (D¥~ _ a¥,) 
Dr Dr a ~, Dz Dz 

D(p i tilp 2 I fD¥i  ~ / )  
Dz Dz : a t  ~ ' 

~,L2~-~;~; at Dz l ar' 

:n~ L W~'=÷al, Dd D, "~ 

_(~e2 o~o, +~o  M i o ~ ' z - ' " 2 o  = 
vt,~ Dt Dz / 

: :'  J - ' W 7  : 

We will consider problem (1.5), (1.7), (1.9) and (1.11) further. 

a 2 Dz 

(1.11) 
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2. THE D I S P E R S I O N  R E L A T I O N .  F I N D I N G  THE R O O T  

W e  will investigate the behaviour of solutions of the form 

[~,~0/,¥j,fj] = ei(k:'-°t)t~o,dPy(r),Wj(r),Fj(r)], i = ~ (2.1) 

as time increases. Here ~ is a constant, k is the specified wave number, and to is to be determined when 
solving the problem. Substituting (2.1) into (1.5) and (1.9) we obtain 

F)"+ 1 6 "  - (kt~j)2 F) = 0 (2.2) 

. 1 , 2 
*7+-Ir ~ ; -  k2*j  = 0, W ~ - r W ' J - m j ~ F ) = O  

my = 4 k  2 - i t o l v j ,  Remj  > 0  

(2.3) 

The solutions of Eqs (2.2), satisfying the matching conditions (1.7), converted using representations 
(2.1), can be written as follows: 

F 1 = i~0(MI0 - M2o)Ko(~2ka)lo(( t ikr) ls  

F 2 = i~o(M!o - M2o)lo(C~lka)Ko(t~2kr ) I s 

$ ----- ~l~J.rl Ii (t~tka)Ko(t~2ka) + (12l.tr210(t~lka)Ki ( t ~ 2 k a )  

(2.4) 

where It(x), Kl(X) (l = 0, 1) are modified Bessel functions of the first and second kind. 
From (2.3) we obtain 

~1 = Atlo(kr), eP2 = A2Ko(kr) (2.5) 

W t = C!r!!(m,r), W 2 = C2rKl(m2r) 

where A1, a2, C 1 and C2 are arbitrary constants. 
In order to satisfy the kinematic and dynamic conditions at the interface (1.11), converted using (2.1), 

we will substitute solutions (2.4) and (2.5) into them. As a result, using recurrence formulae for the 
Bessel functions, we obtain 

i~oto + A,kl t (x) + iCikl t (Yl ) = 0 

A I I t (x) + A 2 K t (×) + iC I !! (y|) - iC2K I (Y2) = 0 

iAIklo(×) - /A2kKo (x) - CImt lo(Yt) - C2m2Ko(Y2 ) = 0 

2iAl~lk211 (x) + 2iA2~2k2K! (x) - Civil (k 2 + ml 2)!1 (Yl) - (721"]2( k2 + m22 )Kt (Y2) = 0 

~o[tX( I _ ×2)_ a~toH2c(×)] + At [iptoa2 !0 (x)_ 2rh x2 i,(×)] _ 

-A2[iPtOa 2 Ko(x) + 2r12x2 K~(x)] - 2iCl rl!×y I i~(y I ) + 2iC2rl2xY2K~(y 2 ) = 0 

(2.6) 

where 

c ( × )  = - V , 2 ) 2 t o ( a l * ) K o ( a 2 * ) / s  

x = ka, Yl = mla  Y2 = m2a 

For a non-trivial solution of the system of linear homogeneous equations in the unknowns ~0,A1, A E, 
C~, C2 to exist, it is necessary for the determinant of the matrix made up of the coefficients of system 
(2.6) to be equal to zero. This equality is a dispersion relation, which serves to find the function to(k). 
By multiplying its rows and columns by certain dimensional coefficients, defined by the formulation of 
the problem, we can reduce this matrix to dimensionless form without loss of generality in the subsequent 
result of calculating to(k). 

In order to find the characteristic velocity Oc of the motion of the liquids due to capillary forces, we 
will consider the balance condition of the normal stresses at the interface (1.6). In the general case, all 
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the terms occurring in this equation are of the same order, so that when 1"11 :# 0, 112 ~ 0 we have 
oc = Ix~,/(a~), where ~, is the characteristic deviation of the interface from the initial cylindrical shape• 
Taking this estimate into account, we obtain from the kinematic condition (i.6) the characteristic 
capillary-viscous time xc = arll/ix. 

Assuming £2 = c0zo we can reduce the matrix Ila~:ll of coefficients of the system of equations (2.6) 
to the following dimensionless form: 

i I2 x/| (×) 0 ixlj (Yl) 0 

0 I| (x) K| (x) il| 0'l ) -iKI (3'2) 

0 i×/0(×) -i×K0(× ) -Yllo(Yl) _Y2Ko(Y2) 

0 2i×211(x) ~-~x2KI(x) -(x2+y?)ll(y,) x2+y2 Kt(y2) 
13 

2i 
2(x) a52 a53 _2ixy|l((yl) .-~xY2Kl(y2) 

(2.7) 

• 2x 2 , 
a52 = i el~lo(×) - 2x211"(~), as3 = - t  t~l~K0(x ) - --fi--- K I (x) 

Q(x )= l -×2-qc (×) ,  Y j=~[×2- i e j~ ,  j = l , 2  

p ~  p~a q = a g ° H ~ ,  13=11-AL ~ l = - -  ~ 2 = ~  
IX 1"12 II 2 ' 111112 

The parameter e 1 is the ratio of the characteristic vorticity diffusion time Xd = paE/rh to the charac- 
teristic time Xc. The interpretation of e2 is similar. 

We will put det Ilaij II = F(f~,  ×; el, e2). When f2 = 0 the fourth column of matrix (2.7) is proportional 
to the second column, while the third is proportional to the fifth. In view of this F(0, ×; el, e2) = 0 
for all ×, e 1, e2. For the same reason F~(0, ×; el, e2)= 0 for any x, e 1, e2. Using the MAPLE software 
package we established that for arbitrary ×, el, e 2 the condition F~u(0, ×; el, e2) ~ 0 is satisfied. Hence, 
the dispersion relation det II aij II = 0 has a root ~ = 0 of multiplicity two. The trivial root is of no interest 
from the physical point of view. 

A similar analysis shows that for an arbitrary pair ~,  x we have the equalities 

 ,o.00,:0 0 --0, 

The expressions in (2.7), which contain el and e2 as factors, have their origin in the left-hand sides 
of Eqs (1.3) and (1.4). In view of this, when formulating the problem in the framework of the quasi- 
stationary Stokes equations (i.e. dropping the derivatives with respect to time in (1.3) and (1.4)) terms 
containing el and e 2 disappear in the elements of matrix (2.7), and det Ilaij II = 0 for any ~ and ×. Hence, 
within the framework of the quasi-stationary Stokes equations, the dispersion relation of the problem 
of the capillary instability of a liquid cylinder does not exist. 

We will further consider the development of the capillary instability of a fairly thin cylinder 
(0 < ej "~ 1), when the inertia forces are small compared with the viscous forces. Analysis showed that 
expansion ofF(if2, ×; el, ez) in powers of ej begins from the quadratic terms. In view of this, the condition 
for a non-trivial solution of system of equations (2.6) to exist in the first approximation can be written 
as follows: 

32----F] +213 32/7 =0  

I. :0 aE,a   
(2.8) 

Using the MAPLE software package we established that, in expanded form, (2.8) is an equation 
of the third degree in f2. The non-trivial root of this equation can be written in dimensional form as 
follows: 
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co= 2a q,q2 +×2(~,-~2)[q,S(×)T(×)-~2R(x)U(×)] (2.9) 
icxx 2 

where 

R(x) = lo(×)12(×)- 12(×), S(×)= Ko(×)K2(x)-  K~(×) 

r~.)=,:~o~.,)-(~, ~ + ~),,~)..~.)= ~2Ko~)-(~2 + ~)K,~) 

The effect of a magnetic field on the development of capillary instability is described by the term qc(×), 
which occurs in the factor Q(×) in the numerator of this formula. 

When ~q~ # 0, ~12 = 0, the order of Eqs (1.3) and (1.4) is reduced w h e n j  = 2 and the kinematic 
condition w~ = w2 must be dropped in (1.6). As a result the order of the matrix (2.7) is reduced: in 
(2.7) it is necessary to cancel the third row and the fifth column and put I~ -~ = 0. When taking into 
account the first two terms of the expansion of det I la011 in powers of el the condition for a non-trivial 
solution of the system of equations (2.6), simplified in this way, to exist 

2 dF +e~ = 0  (2.10) 
d£1 ~=0 d~2 ~=o 

is a cubic equation in tOmql/C~. Hence we obtain the having physical meaning root of the dispersion 
relation 

(x 
co= f~, ~ = ~ o  + e ~  (2.11) 

arl~ 

i ff(×)Q(×) "£2, = i ~)Efx) 
~o = 2 T(×) ' 2 ×21j(×)Kt(x)T(×) 

E ~  = ~ ,o¢,,)K,~[,,2 ~ ) -  ~o ~ ¢~]+ , :  ,,<~)K,¢~)[2,~ ¢,,)- ,,2 ~ ]  + ,,2 ~,,) 

We can obtain the following terms of the expansion in a similar way. Analysis showed that, in the 
neighbourhood of the point × = 0, this expansion is non-uniform with respect to ×. 

When rh = 0, T12 # 0 we put x~ = mq~/tx and x~ = pa2hq2 . In this case, the matrix used when carrying 
out the calculations can be written as follows: 

ii/i 0 0 It (×) Kt (×) - iK t (y) 
0 2i×2K1(×) (×2+ y2)K,(y)] ] 

IIQ(×) ieofllo(×) -ieo~Ko(×)- 2×2K((×) 2i×yKI (Y) [I 

y = 4 ×  2-iE0£2, E 0 = ~ / x  c 

(2.12) 

The approximate 
similar to (2.10), in 
form 

expression for the root of the dispersion relation, obtained using an equation 
which the determinant of matrix (2.12) and the parameter e0 occur, has the 

to = D, f~ = ~0 + e0f~ 
arl2 

i K2(×)Q(×) £21 = i ~20G(x) 
£2o = 2 U(×) ' 2 x211(x)Kt(×)U(x) 

(2.13) 

In the special case when lql --- 112 = 11, Eq. (2.9) simplifies considerably and becomes 
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ia Q(×){211(×)KI(×) + ×[/I(×)K0(×) -/o(×)K,(×)]} 
o = 2arl (2.14) 

In the limiting c a s e s  1~2/~]1 --') 0, 111/112 "---) 0 the first terms of expansions (2.11) and (2.13) follow from 
(2.9). 

When there is no jump in the magnetic permeability on passing through the interface (the case 
~1 = ~tr2), formula (2.14) and the first terms of expansions (2.11) and (2.13) are identical, apart from 
the notation, with the results obtained previously in [14, 6, 11-13]. 

3. T H E  E F F E C T  O F  A M A G N E T I C  F I E L D  
ON C A P I L L A R Y  I N S T A B I L I T Y  

When drawing graphs illustrating the effect of  the field on the instability of a liquid cylinder, linear 
magnetization law of the ferrofluid (Ol = 1, ts2 = 1) is assumed. The curves shown in Figs 1-4 correspond 
to the case of  a cylinder of magnetic liquid (~1 = 4), surrounded by a non-magnetic liquid (1#2 = 1). 
In Fig. I the dashed curves correspond to the case when there is no field (q = 0), while the continuous 
curves represent the case when q = 0.3. When × lies to the right of the points of intersection of the 
curves with the abscissa axis, Im ~2 < 0, i.e. the harmonics corresponding to these ka are stable. As can 
be seen from Fig. 1, a magnetic field stabilizes a certain range of harmonics (with wavelengths 3. > 21ta) 
that are unstable when there is no field, and the width of  the this range is independent of the viscosities 
of the liquids contiguous to each other. When the magnetic field strength is increased the range of 
wavelengths, stabilized by the field, increases. Moreover, for fixed [3, ~trl and ~2, as the magnetic field 
strength increases the characteristic development time (Im~)z 1 of the most rapidly growing harmonic 
(which gives the maximum of the corresponding curve) also increases. In the case of a fixed field when 
the viscosity of the inner liquid is increased compared with the viscosity of the liquid surrounding it, 
qualitatively the same thing occurs. 

The wavelength ~., of the most rapidly growing harmonic, found experimentally by measuring the 
diameter of the drop formed in the capillary break-up of  a liquid cylinder, when e 1 ,~ 1, [~E 2 '~  1 agrees 
well with the linear theory [9, 10]. 

Of  course, in such a procedure, the formation of satellites (fine drops situated in the gaps between 
large drops, which are formed due to non-linear effects) is ignored. In general, the dimensionless quantity 
~.,/a is a function of q, [3, gtrl, ~r2, o"1, (~2. 

Figure 2 illustrates the effect of the magnetic field on the wavelength of the most rapidly growing 
harmonic. The graphs presented in the figure, corresponding to different values of [3, are drawn for 
I~1 = 4 and ~tr2 = 1. It follows from the graphs that for the same liquid cylinder, the size of the drop 
increases as the magnetic field strength increases. In the case of a fixed field, ~.,/a is a non-monotonic 
function of  the ratio of the liquid viscosities (Fig. 3). Here the least wavelength of  the most rapidly 
growing harmonic ~,,/a = 10.65 occurs when there is no field with 13 = 0.284. As the field increases there 
is a reduction in the value of [3 for which ~.,/a has a minimum. 

lmf~ 
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0 0.25 0.50 0.75 
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As was noted above, when there is contact between the viscous and non-viscous liquids the expressions 
obtained previously for the roots of the dispersion relations correspond to the first terms of the 
expansions (2.11) and (2.13) when Q(×) = 1 -×2.  In this approximation the harmonics with ka = 0 
grow most rapidly [6, 11-13]. In Fig. 4 the dashed curve for q = 0, representing the first term of expansion 
(2.11), corresponds to this case. The situation is changed considerably when the term linear in el is taken 
into account in (2.11). The graph of the function Im ~(×), represented by the continuous line with 
q = 0 and el = 10 -~ in Fig. 4, has a maximum for a certain k.a ~ O. The pair of curves in Fig. 4 
corresponding to q = 0.9, is drawn for ~trl = 4 and ~tr2 = 1; the dashed curve corresponds, as before, 
to the first term of expansion (2.11). The curves drawn using relation (2.13) behave in a similar way. 
Hence, unlike the expressions previously obtained in [6, 11-13] for the roots of the dispersion relations, 
corresponding to cases when there is contact between the viscous and non-viscous liquids, when the 
next approximation with respect to the small parameter is taken into account the wavelength of the 
most rapidly growing harmonic turns out to be finite. 

In view of the fact that to depends quadratically on the jump in the magnetic permeability ktrl - ~tr2, 
the magnetic field turns out to have a stabilizing influence not only a cylinder of magnetic liquid 
surrounded by a non-magnetic liquid, but also on a cylinder of non-magnetic liquid which is inside a 
magnetic liquid. In Fig. 5 all the graphs are drawn for r h = r12. Curves 1 (~l  = 4) and 2 (~.~ = 5) illustrate 
the effect of the field on the capillary instability of a cylinder of magnetic liquid surrounded by a non- 
magnetic liquid (!~-2 = 1), while the dashed curves 1 (kt~2 = 4) and 2 (~t~2 = 5) correspond to the opposite 
case, when there is a cylinder of non-magnetic liquid (kt~l = 1) inside a magnetic liquid, It follows from 
the graphs that for the same value of the field and when the diameters of the liquid cylinders are equal, 
in the first case, as a result of capillary break-up, larger drops are formed than in the second case. 

This research was supported financially by the Russian Foundation for Basic Research 
(99-01--01057). 
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